Slow and Fast Gamma Rhythms Coordinate Different Spatial Coding Modes in Hippocampal Place Cells
نویسندگان
چکیده
Previous work has hinted that prospective and retrospective coding modes exist in hippocampus. Prospective coding is believed to reflect memory retrieval processes, whereas retrospective coding is thought to be important for memory encoding. Here, we show in rats that separate prospective and retrospective modes exist in hippocampal subfield CA1 and that slow and fast gamma rhythms differentially coordinate place cells during the two modes. Slow gamma power and phase locking of spikes increased during prospective coding; fast gamma power and phase locking increased during retrospective coding. Additionally, slow gamma spikes occurred earlier in place fields than fast gamma spikes, and cell ensembles retrieved upcoming positions during slow gamma and encoded past positions during fast gamma. These results imply that alternating slow and fast gamma states allow the hippocampus to switch between prospective and retrospective modes, possibly to prevent interference between memory retrieval and encoding.
منابع مشابه
Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice.
CA1 place cells become more anticipatory with experience, an effect thought to be caused by NMDA receptor-dependent plasticity in the CA3-CA1 network. Theta (~5-12 Hz), slow gamma (~25-50 Hz), and fast gamma (~50-100 Hz) rhythms are thought to route spatial information in the hippocampal formation and to coordinate place cell ensembles. Yet, it is unknown whether these rhythms exhibit experienc...
متن کاملSpatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus
Spatiotemporal trajectories are coded by "theta sequences," ordered series of hippocampal place cell spikes that reflect the order of behavioral experiences. Theta sequences are thought to be organized by co-occurring gamma rhythms (∼25-100 Hz). However, how sequences of locations are represented during distinct slow (∼25-55 Hz) and fast (∼60-100 Hz) gamma subtypes remains poorly understood. We...
متن کاملFast Gamma Rhythms in the Hippocampus Promote Encoding of Novel Object–Place Pairings123
Hippocampal gamma rhythms increase during mnemonic operations (Johnson and Redish, 2007; Montgomery and Buzsáki, 2007; Sederberg et al., 2007; Jutras et al., 2009; Trimper et al., 2014) and may affect memory encoding by coordinating activity of neurons that code related information (Jensen and Lisman, 2005). Here, a hippocampal-dependent, object-place association task (Clark et al., 2000; Broad...
متن کاملImpairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer's disease.
Alzheimer's disease (AD) is an irreversible and highly progressive neurodegenerative disease. Clinically, patients with AD display impairments in episodic and spatial memory. However, the underlying neuronal dysfunctions that result in these impairments remain poorly understood. The hippocampus is crucial for spatial and episodic memory, and thus we tested the hypothesis that abnormal neuronal ...
متن کاملDiversity in neural firing dynamics supports both rigid and learned hippocampal sequences.
Cell assembly sequences during learning are "replayed" during hippocampal ripples and contribute to the consolidation of episodic memories. However, neuronal sequences may also reflect preexisting dynamics. We report that sequences of place-cell firing in a novel environment are formed from a combination of the contributions of a rigid, predominantly fast-firing subset of pyramidal neurons with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 82 شماره
صفحات -
تاریخ انتشار 2014